1	In vivo Screening to Determine Hazards of Nanoparticles: Nanosized TiO_2	
2		
3	Drobne Damjana ^a , Jemec Anita ^{*^b} , Pipan Živa ^a	
4		
5	^a University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,	
6	SI-1000 Ljubljana, Slovenia	
7	^b National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia	
8		
9		
10	*corresponding author	
11		
12	ANITA JEMEC	
13	Tel. 0038614760245	
14	Fax. 0038614760300	
15	anita.jemec@ki.si	
16		
17	Co-authors:	
18	damjana.drobne@bf.uni-lj.si	
19	ziva.pipan@bf.uni-lj.si	
20		
21		

22 Abstract

24	A single-species laboratory test with terrestrial invertebrates was used to identify the
25	hazard of nanosized TiO ₂ . Feeding parameters, weight change, mortality, and the
26	activities of catalase and glutathione- S-transferase were evaluated after three or 14 days
27	of dietary exposure. The effects of nano-TiO $_2$ were dependent on exposure
28	concentration and duration, total consumed quantity, size and pre-treatment of particles.
29	The intensity of a response was ruled by duration of exposure and not by consumed
30	quantity of nano-TiO ₂ or exposure concentration as expected. The response to nano-
31	TiO_2 is described as threshold-like. The exposure concentrations 10-1000 $\mu g \ TiO_2/g$
32	dry food (1.35-1025 μg of total consumed quantity of TiO_2/g animal wet wt) were
33	identified as safe for tested species after tested exposure period. We conclude that the
34	response to nanoparticles is different from that of soluble chemicals therefore these two
35	types of data should be interpreted and processed differently.
36	
37	Keywords: Nanoparticles, Dietary exposure, Terrestrial invertebrates, Biomarkers,
38	Biological activity
39	
40	Capsule: The response of a biological system to nanoparticles is unique and depends on
41	their physico-chemical characteristics, dose and duration of exposure.
42	
43	
4.4	
44	

46 1 INTRODUCTION

68

47 The ecotoxicity data on the effects of nanoparticles are in much need for the 48 appropriate environmental risk assessment. Different documents already exists which 49 deal with emerging and newly identified health risks (TGD Document, 2003; NANO 50 Risk Framework, 2007; SCENIHR, 2007). Development of a hazard profile is the 51 critical step in characterizing the potential safety of nanoparticles, and the associated 52 health and environmental hazards. A base set of hazard data has been suggested as a 53 reference for characterization and prioritization of nanoparticles (Warheit et al., 2007a). 54 To characterize nanoparticles and its potential hazards sufficiently, empirical data are necessary. Since the early days of the REACH proposals (REACH, 2006), it 55 56 has been agreed by all partners that the number of animals used to gain toxicity 57 information on chemicals should be kept to an absolute minimum. There is evidence 58 that in vitro and in silico methods for acute chemical toxicity are able to provide 59 sufficient data to permit classification and labelling. However, for those substances with 60 no available toxicity data a read-across and quantitative structure-activity relationship 61 techniques (QSAR) are not possible, therefore in vivo testing is required to rapidly 62 identify hazardous substances. Tests with invertebrates are suitable for such purposes 63 since they are not subjected to the same legal restrictions as vertebrates. 64 We present a laboratory single-species toxicity test with the terrestrial arthropod 65 (Porcellio scaber, Isopoda, Crustacea) for the purposes of hazard identification of 66 nanosized TiO₂. The experimental design presented in this work provides data on 67 biological responses from several levels of biological organisation; e.g. lower level

69 investigated in the present study were catalase (CAT) and glutathione-S-transferase

(enzyme activities) and higher level (feeding, growth and mortality). The two enzymes

70 (GST), both of which are involved in antioxidant defence against reactive oxygen 71 species. The main function of CAT is to catalyze the decomposition of hydrogen 72 peroxide, while GST is a member of a large family of multifunctional enzymes involved 73 in the cellular detoxification of many xenobiotics and physiological substances, 74 including the endogenous products during lipid peroxidation. Our previous work has 75 shown that the advantage of this test is that it provides a variety of toxicity data based 76 on exposure concentration (such as lowest- and no-observed exposure concentration) 77 and also exposure dose (lowest- and no- observed exposure dose). The isopod toxicity 78 test system has been used successfully in metal and pesticide toxicity studies (Drobne, 79 1997; Stanek et al., 2006). 80 To validate our test system for testing of nanoparticles we selected 81 nanoparticulate matter for which some toxicity information already exists (Hund-Rinke 82 and Simon, 2006; Federici et al., 2007; Lovern and Klaper, 2006; Warheit et al., 2007a). 83 The nanosized TiO_2 has a number of industrial applications such as a food colouring, 84 additive in pharmaceuticals and cosmetics and, due to its photo-physical properties, it is 85 also used in a wide range of other consumer products (Masciangoli et al., 2003). It had 86 been considered biologically inert prior to studies with ultra-fine particles which 87 showed that ultra-fine TiO₂ particles (20 nm in diameter) provoked an inflammatory 88 response in laboratory test organisms (Oberdörster et al., 1994).

The aim of the present work was to investigate the hazard of nanosized TiO₂.
We investigated: (a) exposure duration-effect relationship; (b) exposure concentration
(dose)-effect relationship; (c) effect-particle size relationship; and (d) the effect of
nanoparticle pre-treatment. We compare our toxicity data on TiO₂ with literature reports

93	and discuss suitability of terrestrial isopods for hazard identification of engineered
94	nanoparticles.
95	
96	2 MATERIALS AND METHODS
97	
98	2.1 Characterization of TiO_2 nanoparticles
99	
100	Two sizes of commercially available TiO_2 nanoparticles (Sigma-Aldrich) were
101	investigated: <25 nm in diameter (referred to here as 'smaller') and <75 nm in diameter
102	('larger'). The characteristics provided by the supplier are described in Table 1.
103	Additional characterisation of the test material was performed on the nanoparticles as
104	delivered (either powder or liquid medium) and also dispersed in bidistilled water (pH
105	value 5.7), which was used to prepare the food for isopod toxicity testing.
106	The commercial material was investigated by BET analysis (Brunauer- Emmett
107	-Teller surface area analysis; Tristar 3000, Micrometrics) (Braunauer et al., 1938) to
108	obtain information concerning the surface area of the solid material. Here, samples were
109	dried and degassed with nitrogen prior to analysis.
110	Sonicated and non-sonicated dispersions of TiO_2 in bidistilled water were
111	inspected by transmission electron microscopy (TEM) and a dynamic light scattering
112	technique (DLS). The dispersions prepared in bidistilled water (0.0066; 0.066; 0.667
113	g/L) were sonicated on ice for 30 min using 10 s pulses with 13872 J of the total input
114	of energy (Sonics vibra-cell, Ultrasonic processor VCX 750 Watt; Sonics & Materials,
115	Newtown, CT, USA). Both sonicated and non-sonicated dispersions were put on

116	carbon-coated grids, dried at room temperature and examined by TEM (Philips CM	
117	100).	
118	The same concentrations of sonicated and non-sonicated dispersions prepared in	
119	ultra-pure water filtered through a $0.2 \ \mu m$ sieve (Millipore, Billerica, MA, USA; ion	
120	free, $pH = 5.7$) were inspected by DLS using a 3D-DLS-SLS Spectrometer (LS	
121	Instruments, Firbourg, Switzerland).	
122		
123	2.2 Exposure of isopods P. scaber to TiO_2	
124		
125	2.2.1 Test organisms	
126		
127	Terrestrial isopods (Porcellio scaber, Latreille 1804) were collected under the	
128	litter layer in an uncontaminated location in the vicinity of Ljubljana. In the laboratory,	
129	the animals were kept in a terrarium ($20 \times 35 \times 20$ cm) filled with a 2 to 5 cm layer of	
130	moistened sand and soil and a thick layer of partly decomposed hazelnut tree leaves	
131	(Corylus avellana). The substratum in the terrarium was heated to 80°C for several	
132	hours to destroy predators (spiders) before the introduction of the isopods. The culture	
133	was kept at controlled room temperature (21±1°C), 16:8 h light/dark regime and high	
134	humidity. The adults of <i>P. scaber</i> of both sexes and with body weights ranging from 30	
135	to 80 mg, and all moult stages, were exposed to TiO_2 within 1 to 14 d after collection in	
136	the field. It has been previously shown, that these confounding factors do not influence	
137	the possible toxic outcomes of pollutants on isopods (Jemec et al., 2008).	
138		

2.2.2 Experimental design

140

141	Each animal was placed individually in a Petri dish, to which individual pieces
142	of TiO ₂ -treated dry leaves were added. Humidity in the Petri dishes was maintained by
143	regular spraying with tap water on the internal side of the lids. All Petri dishes were
144	placed in a large plastic-covered glass container maintained at approximately 100%
145	relative humidity and a 16:8 h light/dark regime without the direct proximity of the
146	lamp (illumination 16 h with 203 nmol m ⁻² s ⁻¹ (15 lux), and 8 h with 67 nmol m ⁻² s ⁻¹ (5
147	lux).
148	After 3 d and 14 d of exposure, lower and higher level end-points were
149	evaluated according to the test protocol (Table 2). Animal mortality was recorded, the
150	surviving animals were weighed at the end of the experiments, and the leaves were

dried at room temperature for 24 h prior to weighing. Faecal pellets were counted and
weighed after drying in the exsiccator for 48 h. The animals were dissected and the
digestive glands (hepatopancreas) were isolated for measurements of catalase (CAT)
and glutathione S-tranferase (GST) activities.

155 Altogether, four experiments were performed (Table 3). In two of them (A, B) 156 we assessed the effect of duration of exposure (3d and 14d). In other two (B, C) the 157 main focus was placed on the effect of particle size (<25 nm and <75 nm), and in one 158 simple experiment (D) we tested the possible influence of the pre-treatment of 159 nanoparticles. Based on previous results only one concentration (1000 µg of TiO₂/g dry 160 food) of small size nanoparticles was selected for this purpose. Exposure concentrations 161 presented in Table 3 are nominal concentrations, no actual concentrations on leaves 162 were measured.

163	The number of animals tested in each experiment depended on the abundance of
164	population collected prior to exposure (Table 3). Namely, our previous work has shown,
165	that the animals investigated for enzyme activities have to be collected at the same field
166	location and exposed immediately after the collection (Jemec et al., 2008).
167	Since currently no data exists on the environmental concentrations of nanosized
168	TiO_2 , the concentrations of TiO_2 used in this study were selected based on preliminary
169	short-term studies, where the effects on enzyme activities were observed up to 3000 μg
170	of TiO ₂ /g dry food (Jemec et al., 2008).
171	
172	2.2.3 Food preparation
173	
174	Food was prepared as previously described (Jemec et al., 2008). Hazelnut tree
175	leaves were collected in uncontaminated woodland, dried at room temperature and the
176	dry leaves were cut up into pieces of similar surface area, and weighed. Pieces of
177	approximately 100 mg were selected for the experiments. Before the application of TiO_2
178	to the leaves, different concentrations of TiO ₂ (0.0066; 0.066; 0.667 g/L) were
179	suspended in bidistilled distilled water with pH value of 5.7. The pH of the dispersions
180	was independent on the concentration of TiO_2 and was the same as in bidistilled water.
181	The TiO_2 was suspended using a vortex (20 s, 2000 rpm) and prepared freshly for each
182	experiment. Surfactants were not used to disperse the TiO ₂ , since previous studies have
183	shown that dispersion using solely sonication is adequate (Federici et al., 2007; Warheit
184	et al., 2007b). 150 μ l of the dispersion per 100 mg of leaf were applied onto the lower
185	leaf surfaces and dispersed using a paintbrush. Dispersions of TiO_2 with concentrations
186	0.0066, 0.066 and 0.667 g/L resulted in final concentrations of 10, 100 and 1000 μ g of

TiO₂/g dry food. Prior to sampling of the suspension, the dispersion was each time
rotated on a vortex for 5 s. Non-sonicated and sonicated dispersions of TiO₂ were
applied to the leaves. The sonicated dispersion was prepared using a sonicator (30 min,
10 s pulses; Sonics vibra-cell, Ultrasonic processor VCX 750 Watt; Sonics & Materials,
Newtown, CT, USA). Animals in the control group were fed with the leaves prepared in
the same way, but treated with the distilled water only.

- 193
- 194

2.2.4 Determination of enzyme activities

195

Animals of both genders and at all moult stages were used for enzyme analyses and a separate enzyme sample was prepared from each animal. The whole digestive gland was homogenized for 3 min in 0.8 ml of 50 mM phosphate buffer pH 7.0, using a teflon–glass Elvehjem-Potter homogenizer. The homogenate was centrifuged for 25 min at 15000 g and 4°C.

201 GST activity was measured on microtiter plates (Bio-Tek[®] Instruments,

202 Winooski, VT, USA; PowerWaveTM XS) (Habig et al., 1974; Jemec et al., 2007). Final

203 concentrations of both 1-chloro-2,4-dinitrobenzene and reduced glutathione, prepared in

204 100 mM potassium phosphate buffer pH 6.5, were 1 mM. A detailed description of the

205 preparation of 1-chloro-2,4-dinitrobenzene solution is has been described previously

206 (Jemec et al., 2007). 50 µl of the protein supernatant was added to start the reaction

which was followed spectrophotometrically at 340 nm and 25°C for 3 min. GST activity

208 was expressed in nmoles of conjugated reduced glutathione min⁻¹ mg protein⁻¹

209 (extinction coefficient, $\varepsilon_{340} = 9600 \text{ L mol}^{-1} \text{ cm}^{-1}$).

210	Catalase activity was determined according to a published method (Aebi 1984).	
211	100 μ l of protein supernatant was combined with 700 μ l of hydrogen peroxide solution	
212	(11.6 mM) in 50 mM potassium phosphate buffer pH 7.0. The final concentration of	
213	hydrogen peroxide was 10.2 mM. The reaction was followed spectrophotometrically for	
214	3 min at 25°C and 240 nm in a Shimadzu ultraviolet-2101PC spectrophotometer	
215	(Shimadzu, Kyoto, Japan). Catalase activity was expressed in µmoles of degraded	
216	hydrogen peroxide min ⁻¹ mg protein ⁻¹ ($\epsilon_{240} = 43.6 \text{ L mol}^{-1} \text{ cm}^{-1}$). The activities of both	
217	GST and CAT were measured three times in each sample.	
218	Protein concentration was measured using a BCA TM Protein Assay Kit, a	
219	modification of the bicinchoninic acid protein assay (Pierce, Rockford, IL, USA).	
220		
221	2.3 Data analysis	

223 At the end of experiment faecal pellets were removed completely from the leaves 224 using a brush, they were counted and weighted. Also, the leaves were weighted. The 225 feeding rate and defecation rate of isopods were calculated as the mass of consumed leaf 226 and mass of faecal pellets per animal wet weight per day, respectively. The food 227 assimilation efficiency was calculated as the difference between the mass of consumed 228 leaf and mass of faecal pellets divided by the mass of consumed leaf. The animal mass 229 change was determined as the difference in animal mass at the beginning and at the end of the experiment. The amount of the daily consumed TiO₂ was calculated from the 230 231 mass of consumed leaf and the corresponding applied concentration of TiO₂. 232 Homogeneity of variance was tested with Levene's test. The differences 233 between the control and exposed groups of animals were determined by Kruskal-Wallis

234	analysis and the Games-Howell post hoc test using SPSS for Windows 8.0 (SPSS Inc.,
235	USA). The comparison of data was done within a single experiment, no cross statistical
236	comparisons between the experiments (A-D) were performed.
237	
238	3 RESULTS
239	
240 241	3.1 Characterization of nanosized TiO ₂ particles
242	The characteristics of nanosized TiO ₂ are provided in Table 1. The BET analysis
243	revealed that both sizes of nanosized TiO_2 formulations were in accord with the data
244	provided by supplier (smaller < 25 nm, larger < 75 nm). BET revealed a specific surface
245	area of 145 $m^2\!/g$ for the small sized TiO_2 nanoparticles and 40 $m^2\!/g$ for larger sized
246	nanoparticles.
247	The TEM analysis showed that looser aggregates of nano-TiO ₂ were formed
248	when the dispersion was sonicated in comparison to non-sonicated small sized TiO_2 .
249	Looser aggregates were also formed in the case of larger nanosized TiO_2 in comparison
250	to smaller one (Fig.1).
251	Similarly, the size of aggregates as determined by DLS (0.0066 and 0.066 g/L of
252	TiO_2) was lower in the case of sonicated smaller TiO_2 and larger TiO_2 form in
253	comparison to non-sonicated small sized TiO ₂ . Concentrations of 0.667 g/L of TiO ₂
254	were not examined by DLS, because at such high concentrations the signal was beyond
255	the scale of the detector.
256	

257 3.2 The effects of nanosized TiO_2 on P. scaber

259	The results presented in this work demonstrate that nanoparticulate TiO_2 in	
260	exposure concentrations 10, 100 and 1000 $\mu g~TiO_2/g$ dry food has no effect on	
261	mortality, weight change or GST activity in <i>P. scaber</i> after feeding with two sizes of	
262	nanosized TiO_2 dosed food for three or 14 d. The activity of CAT and two feeding	
263	parameters (food assimilation efficiency and feeding rate) were changed in dependence	
264	of duration-, dose-, nanoparticle size and pretreatment (Table 4 and 5, Figs. 2-4).	
265	When the animals were exposed to the same concentrations and size of	
266	nanoparticles in two different experiments, the results on AE and feeding rate were not	
267	entirely repeatable (at 100 μg and 1000 μg of small size TiO_2/g dry food). We explain	
268	this phenomenon in the discussion.	
269		
270 271	3.2.1 Exposure duration dependence	
272	After three days of exposure, there were no changes in any of measured	
273	responses in animals fed on smaller nanoparticulate TiO_2 (10, 100, 1000 μg TiO_2/ g dry	
274	food) when compared to the control (Table 4a, Fig. 2). However, the same exposure	
275	concentrations and same type of nanoparticulate TiO ₂ significantly affected CAT	
276	activity and two feeding parameters after 14 d of exposure (Table 4b, Figs. 3-4).	
277	When the total consumed quantities of TiO_2 were compared (experiments A and	
278	B), similar total consumed quantities had different effects when ingested in 3 d or in 14	
279	d. For example, a total consumed quantity in the range from 1.35 μg of TiO_2/g animal	
280	wet weight (wet wt.) to 219 μ g of TiO ₂ /g wet wt. in three days exposure had no effect	

281	on measured parameters, while similar total consumed quantity (8.12 μ g TiO ₂ /g wet wt.	
282	to 905 μ g TiO ₂ /g wet wt.) in 14 d provoked changes to some of measured parameters	
283	(Table 5). These results show that the effect was not primarily related to exposure	
284	concentration or total consumed quantity, but was dependent upon duration of exposure.	
285		
286	3.2.2 Exposure- dose dependence	
287		
288	The dose-dependent pattern for feeding parameters and CAT activity was	
289	recognised to be threshold-like when animals were fed on small nanosized TiO_2 (Table	
290	4b, Table 5, Fig.3). When animals were exposed to larger nano-TiO ₂ no dose response	
291	relationship pattern could be recognised for feeding parameters (Table 4c, Table 5, Fig.	
292	4).	
293		
294	3.2.3 Size of nanoparticles dependence	
295		
296	When the biological effects of both sizes of nanoparticles were compared within	
297	experiment C, significant differences were observed (Table 4 c, Fig. 4). Smaller	
298	nanoparticles (100 μ g/g dry food exposure concentration) caused induction of feeding	
299	parameters and increased CAT activity, while no change was observed at the same	
300	concentration of larger nanoparticles.	
301		
302	3.2.4 Pre-treatment of nanoparticles dependence	
303		

304	In a simple test, we compared the effects of the same exposure concentration,
305	dose and size of nanoparticles prepared in different ways, i.e. sonicated or non-
306	sonicated (Table 4 d, Fig.5). Sonicated smaller nanoparticles of TiO ₂ enhanced AE,
307	which was unaffected by the same exposure concentration of non-sonicated
308	nanoparticles. CAT activity was increased in both groups of exposed animals
309	independently on pre-treatment of nanoparticles. It is evident that the modification of
310	nanoparticles might affect their biological reactivity potential, however to what extend
311	remains to be further investigated.

313 4 DISCUSSION

The effects of nanosized TiO_2 on terrestrial isopods depended on the total consumed quantity and exposure concentration of nanoparticles, exposure duration, and the size of particles as well as their pre-treatment.

It was expected that the intensity of a response would reflect the amount of consumed quantity of nanoparticles, but the results show that it was ruled by duration of exposure and not by consumed quantity or exposure concentration of nano-TiO₂. For instance, a total ingested amount of $8.12 \ \mu g/g$ wet wt. of smaller TiO₂ in 14 d led to elevation in feeding parameters (Table 5), but the feeding parameters were not affected when an even higher amount (20.4 $\mu g/g$ wet wt.) of the same size TiO₂ was consumed in three days.

As determined in the present study, the dose-response relationships for
nanoparticles are different from those of conventional chemicals (Drobne et al., 2008;
Stanek et al., 2006). Nanosized TiO₂ provoked a threshold-like dose-response of
parameters studied in *P. scaber*. This was evident in the case of exposure to small

nanosized TiO₂. Here, two orders of magnitude different concentrations of nano-TiO₂
had similar effect on feeding parameters and CAT activity.

Contrary to expectations, nanosized TiO_2 enhanced feeding rate of *P. scaber*. On the basis of our previous work, we expected reduced feeding rate as recorded many times upon exposure to metal dosed food (Drobne and Hopkin, 1995). We explain the increase of feeding parameters as a hormetic-like response (Calabrese, 2003), which can have complex time response dynamics. In the present work, this means that after 14 d of exposure we can either detect an increase of the feeding response (experiment B) or miss it due to its cessation (experiment D).

It has been suggested, that small sized particles, whose surface area per unit 337 338 mass is larger than that of larger particles, are more biologically potent (Borm et al., 339 2006; Oberdörster et al., 2007; Warheit et al., 2007 b). Our results confirm this 340 suggestion. When effects of similar doses of smaller nanosized TiO₂ and larger 341 nanosized TiO₂ are compared, differences in feeding parameters and CAT activity were 342 observed (Table 4c). This might suggest different modes of action and/or 343 toxicodynamics of the two sizes of TiO₂. However, the effect of nanoparticle size 344 remains to be further studied, since the two tested sizes of nanoparticles were of 345 different crystalline phase. Smaller nano-TiO₂ particles were in pure anatase crystalline 346 phase while larger nanoparticles were a mixture of both, anatase and rutile crystalline 347 phase. 348 The effects of nanoparticles are often linked to their physico-chemical

characteristics (Borm et al., 2006; Oberdörster et al., 2007; Warheit et al., 2007 b). This
was also proven by our results. Sonicated dispersions, which formed smaller aggregates
than non-sonicated suspension, resulted in a higher biological potency. Anyway, the

measured responses observed in this work cannot be explained straightforward by size and surface area of nanoparticles as analysed in aqueous dispersion. Namely, the aggregation pattern of TiO_2 nanoparticles can be further changed on leaf surface and inside the animal's digestive fluids due to different pH in different parts of the digestive system, the presence of surfactants and other biologically active molecules (Diegoli et al., 2008).

358 No adverse effects of nano-TiO₂ on isopods, such as mortality, weight change or 359 decrease of feeding, were observed in this study. Therefore the tested concentrations 360 may be considered safe for isopods exposed for three or 14 d to nanosized TiO_2 . 361 Furthermore, the concentrations tested in the present study (the lowest concentration 362 was 10 μ g/g dry food) are much higher as the recently reported predicted high emission 363 scenario environmental concentrations of nano-TiO₂ in soil (0.0048 μ g/g) (Mueller and 364 Nowack, 2008). Other similar studies also report the low toxicity potential of nanosized 365 TiO₂ when compared to dissolved chemicals. Similar studies report the effects of TiO₂ 366 on the mobility of water fleas Daphnia magna (no effect up to 500 mg/L) (Lovern and 367 Klaper, 2006; Warheit et al., 2007a), the mortality of crustacea Thamnocephalus 368 platyurus (no effect up to 2 g/L) (Hainlaan et al, 2008), the luminescence of bacteria 369 Vibrio fischeri (no effect up to 2 g/L) (Hainlaan et al., 2008), the growth of algae 370 Pseudokirchneriella subcapitata (72 h median effective concentration EC50 = 87 mg/L) 371 (Warheit et al., 2007a), the growth of algae *Desmodesmus subspicatus* (72 h EC50 = 32-372 44 mg/L) (Hund-Rinke and Simon, 2006), and the mobility of rainbow trout 373 Oncorhynchus mykiss (no effect up to 100 mg/L) (Warheit et al., 2007a). It remains to 374 be further checked whether longer exposure periods, which are more realistic in the 375 field, would result in more pronounced effect of nano-TiO₂ on terrestrial isopods.

376 Despite of these data, conclusions concerning the safety of nanoparticles must be 377 drawn with great care. Safety data for nanoparticles should be interpreted as a function 378 of dose, exposure period and also size and surface modifications. To collect all these 379 data a lot of testing is needed under varying conditions and with a reasonable set of 380 endpoints. A bioassay with the terrestrial isopod Porcellio scaber proved to be suitable 381 for detecting effects of nanoparticles. The suite of analyzed biomarkers enables 382 detection of both early non-toxic effects as well as potential adverse effects within 383 changeable duration of exposure. Tests with isopods fit well into a set of tests suited for 384 hazard characterisation of nanoparticles (Warheit et al., 2007a).

In conclusion, the response of a biological system to nanoparticles appeared to be unique and depends on the physico-chemical characteristics of nanoparticles, dose and duration of exposure. The data from biological tests should therefore be interpreted and processed differently from data for chemicals. This is in line with the recommendations provided by the European Commission scientific committee on emerging and newly identified health risks (SCENIHR, 2007). At the present state of knowledge comparative information on the biological activity of nanoparticles would

serve best for characterization of hazard and prioritization of nanosized material.

393

392

394 Acknowledgements:

395

This work was financially supported by Slovenian Research Agency project number J19475. We thank Ksenija Kogej for DLS analysis and G. W. A. Milne for editorial
assistance.

399

400	References :

- 401
- 402 Aebi, H., 1984. Catalase in vitro. Methods in Enzymology 10, 5121-126.
- 403 Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K.,
- 404 Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D.,
- 405 Oberdorster, E., 2006. The potential risks of nanomaterials: A review carried out for
- 406 ECETOC. Particle and Fibre Toxicology 3, 1-35.
- 407 Braunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular
 408 layers. Journal of the American Chemical Society 60, 309- 319.
- 409 Calabrese, E.J., Baldwin, L.A., 2003. Inorganics and hormesis. Crit. Rev. Toxicol. 33,410 215-304.
- 411 Diegoli, S., Manciulea A.L., Begum, S., Jones, I.P., Lead, J.R., Preece, J.A., 2008.
 412 Interaction between manufactured gold nanoparticles and naturally occurring
 413 organic macromolecules. Science of the total environment 402, 51-61.
- 414 Drobne, D., Hopkin, S.P., 1995. The toxicity of zinc to terrestrial isopods in a standard
- 415 laboratory test. Ecotoxicology and Environmental Safety 31, 1-6.
- 416 Drobne, D., 1997. Terrestrial isopods-A good choice for toxicity testing of pollutants in
- 417 the terrestrial environment. Environmental Toxicology and Chemistry 16, 1159-
- 418 1164.
- 419 Drobne, D., Blažič, M., Van Gestel, C.A.M.V, Lešer, V., Zidar, P., Jemec, A., Trebše,
- 420 P., 2008. Toxicity of imidacloprid to the terrestrial isopod *Porcellio scaber*
- 421 (Isopoda, Crustacea). Chemosphere 71, 1326-1334.

422	Federici, G., Shaw, B.J., Handy, R.D., 2007. Toxicity of titanium dioxide nanoparticles
423	to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other
424	physiological effects. Aquatic Toxicology 84, 415-430.
425	Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases, the first
426	enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249,
427	7130-7139.
428	Hansen, S.F., Britt, H., Larsen, B., Stig, I. Olsen, C.; Baun, A., 2007. Categorization
429	framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243 -
430	250.
431	Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A., 2008. Toxicity of
432	nanosized and bulk ZnO, CuO and TiO ₂ to bacteria Vibrio fischeri and crustaceans
433	Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308-1316.
434	Hund-Rinke, K., Simon, M., 2006. Ecotoxic effect of photocatalytic active
435	nanoparticles (TiO ₂) on algae and daphnids. Environmental Science and Pollution
436	Research – International 13, 225-232.
437	Jemec, A., Drobne, D., Tišler, T., Trebše, P., Roš, M., Sepčić, K., 2007. The
438	applicability of acetylcholinesterase and glutathione S-transferase in Daphnia
439	magna toxicity test. Comparative Biochemistry and Physiology Part C 144, 303-
440	309.
441	Jemec, A., Drobne, D., Remškar M., Sepčić K., Tišler T., 2008. Effects of ingested
442	nanosized titanium dioxide on terrestrial isopods Porcellio scaber. Environmental
443	Toxicology and Chemistry, 27, 1904-1914.

444	Lovern, S.B., Klaper, R., 2006. Daphnia magna mortality when exposed to titanium
445	dioxide and fullerene (C_{60}) nanoparticles. Environmental Toxicology and Chemistry
446	25, 1132-1137.

- 447 Masciangoli, T., Zhang, W.X., 2003. Environmental technologies at the nanoscale.
- 448 Environmental Science and Technology 37, 102-108.

- 449 Mueller, N.C., Nowack, B., 2008. Exposure modeling of engineered nanoparticles in the
- 450 environment. Environmental Science and Technology 42, 4447-4453.
- 451 NANO Risk Framework, 2007. Environmental defense - DuPont Nano Partnership,
- 452 DuPont, Wimington, DE.

- 453 http://www.edf.org/documents/6496_Nano%20Risk%20Framework.pdf
- 454 Oberdörster, G., Ferin, J., Lehnert, B.E., 1994. Correlation between particle-size, in-vivo
- 455 particle persistence, and lung injury. Environmental Health Perspectives 102, 173-
- 456 179.

- 457 Oberdörster, G., Stone, V., Donaldson, K., 2007. Toxicology of nanoparticles: A
- 458 historical perspective. Nanotoxicology 1, 2-25.
- 459 REACH, 2006. Regulation (EC) No 1907/2006 of the European parliament and of the
- 460 Council of 18 December 2006 concerning the Registration, Evaluation,
- 461 Authorisation and Restriction of Chemicals.
- 462 http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm
- 463 SCENIHR; 21-22 June 2007. Scientific committee on emerging and newly identified
- 464 health risks. Opinion on the appropriateness of the risk assessment methodology in
- 465 accordance with the technical guidance documents for new and existing substances
- 466 for assessing the risks of nanomaterials. European Commission; Health & Consumer

- 467 Protection directorate-general.
- 468 http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_010.pdf
- 469 Stanek, K., Drobne, D., Trebše, P., 2006. Linkage of biomarkers along levels of
- 470 biological complexity in juvenile and adult diazinon fed terrestrial isopod (*Porcellio*
- 471 *scaber*, Isopoda, Crustacea). Chemosphere 64, 1745-1752.
- 472 TGD Document, 2003. Technical Guidance Document on Risk Assessment, part II.
- 473 European Comission. http://europa.eu.int
- 474 Warheit, D.B., Hoke, R.A., Finlay, C., Donner, E.M., Reed, K.L., Sayes, C.M., 2007a.
- 475 Development of a base set toxicity tests using ultrafine TiO₂ particles as a
- 476 component of nanoparticle risk management. Toxicology Letters 171, 99-110.
- 477 Warheit, D. B., Webb, T. R., Reed, K.L., Frerichs, S., Sayes, C. M., 2007b. Pulmonary
- 478 toxicity study in rats with three forms of ultrafine-TiO₂ particles: Differential
- 479 responses related to surface properties. Toxicology 230, 90-104.
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488

491 **Figure legends:**

492

493 **Fig. 1**: Transmission electron micrographs of nanosized titanium dioxide (TiO₂) <25nm

494 (a) and <75nm (b) in bidestilled water (non-sonicated).

495

496 Fig. 2: The food assimilation efficiency (a), feeding rate (b), catalase (CAT) activity (c),

497 and glutathione S-transferase activity (GST) (d) in isopods fed with small sized TiO₂

498 (<25 nm) for 3 days (Experiment A). Symbols on the box plot represent maximum and

499 minimum value (whiskers: \perp) and mean value (\blacksquare).

500

501 Fig. 3: The food assimilation efficiency (a), feeding rate (b), catalase (CAT) activity (c),

and glutathione S-transferase activity (GST) (d) in isopods fed with small sized TiO_2

503 (<25 nm) for 14 days (Experiment B). Symbols on the box plot represent maximum and

504 minimum value (whiskers: \perp) and mean value (\blacksquare). The effects at a certain exposure

505 concentration, which are significantly different in comparison to control, are shown

506 (symbols denote: (*) p < 0.05, and (**) p < 0.001).

507

```
Fig. 4: The food assimilation efficiency (a), feeding rate (b), catalase (CAT) activity (c),
and glutathione S-transferase activity (GST) (d) in isopods fed with large sized TiO<sub>2</sub>
(<75 nm) for 14 days (Experiment C). Symbols on the box plot represent maximum and
minimum value (whiskers: \perp) and mean value (•). The effects at a certain exposure
concentration, which are significantly different in comparison to control, are shown
(symbols denote: (±) p<0.1; and (*) p<0.05.
```

514

516	Fig. 5 : The food assimilation efficiency (a), feeding rate (b), catalase (CAT) activity (c),
517	and glutathione S-transferase activity (GST) (d) in isopods fed with non-sonicated and
518	sonicated small sized TiO ₂ (<25 nm) for 14 days (Experiment D). Symbols on the box
519	plot represent maximum and minimum value (whiskers: \perp) and mean value (\blacksquare). The
520	effects at a certain exposure concentration, which are significantly different in
521	comparison to control, are shown (*; p<0.05).
522	
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	

540	Table 1.	Characteristics	of TiO ₂	nanoparticles	studied in	the present	work
-----	----------	-----------------	---------------------	---------------	------------	-------------	------

	Small nanosized TiO ₂	Large nanosized TiO ₂
Supplier info	nanopowder	amorphous liquid medium
(Sigma-Aldrich)		dispersion 5 wt.% in H ₂ 0
	anatase crystalline	mixture of rutile and
	structure,	anatase crystalline
		structure,
	particle size <25 nm,	particle size <50 nm
		(XRD), <75 nm (BET)
	surface area 200-220 m^2/g .	no data on surface area
BET (supplied material)		
particle size	10 nm	40 nm
Specific surface area	145 m ² /g	$40 \text{ m}^2/\text{g}$
TEM (aqueous dispersion)		

Single particle size within	10-20 nm	10-120 nm
the aggregates	(Fig. 1a)	(Fig. 1b)
Single particle shape	elongated and round	round
Description of aggregates	N - dense aggregates S –	N - loose aggregates
	net like, loose aggregate	

DLS (aqueous dispersion)

	Size of aggregates	N – 750 to 950 nm	N – 100 to 200 nm
		S – 400 to 460 nm	
542	Symbols: XRD- X-ray diffrao	ction, BET- Brunauer- Emn	nett -Teller surface area
543	analysis, TEM- Transmission	electron micrograph, DLS-	Dynamic light scatter, N: non-
544	sonicated dispersion, S-sonica	ated dispersion	
545			
546			
547			
548			
549			
550			
551			
552			
553			
554			
555			
556			
557			
558			
559			
560			
561			
562			

- **Table 2:** Summary of the test organism, nanoparticles tested, type of exposure and
- 564 endpoints evaluated in the present paper.

Description	Endpoi	Endpoints evaluated			
	Lower level endpoints:	Higher level endpoints:			
Test organism	Digestive glands:	- Feeding rate			
Invertebrate	-glutathione S-transferase	- Food assimilation efficiency			
Isopoda, Crustacea	activity	- Animal mass change			
Terrestrial isopod	-catalase activity	- Mortality			
Porcellio scaber					
Type of exposure					
3 d and 14 d					
dietary exposure					
Chemical					
Nano-sized TiO ₂					
< 25 nm; < 75 nm					
^a d-days					

Suspension	Final exposure	EXPERIMENTS			
of TiO ₂	concentrations of	Total No. of exposed animal		nimals	
	TiO_2 (µg/g dry food)	A ^b	В	С	D
		$3 d^a$	14 d ^a	14 d ^a	14 d ^a
	0	8+8+8	15	7	10
< 25 nm	10	6	15		
non-sonicated	100	8+8+7	15	9	
	1000	10+10+10+6	15		10
< 25 nm sonicated	1000				10
< 75 nm	10			7	
non-sonicated	100			9	
	1000			10	
d-days, ^b experiment . f animals in each exp	A was repeated up to 4 tin	nes, each numbe	r indicat	es the n	umber

Table 4: The effects of nanosized TiO_2 on *P. scaber*. The effects at a certain exposure

587 concentration, which are significantly different in comparison to control, are shown.

588	Symbols denote: (/)	p>0.1-no effect. ((±) p<0.1: (*)	p<0.05, and ((**)	p<0.001).
200		p/ 0.1 no eneed, (_/p 0.1,()	p 0.00, and		p 0.001).

Exp. A: 3 d			
Exposure concentration (μ g/g dry food)	10	100	1000
Particle size (nm)	<25	<25	<25
AE	/	/	/
feeding rate	/	/	/
САТ	/	/	/
GST	/	/	/
weight change	/	/	/
mortality	/	/	/
Exp. B: 14 d			
Exposure concentration (μ g/g dry food)	10	100	1000
Particle size (nm)	<25	<25	<25
AE	* *	*	*
feeding rate	* *	**	*
САТ			
	/	*	*
GST	/	* /	*
GST weight change	/ / /	* / /	* / /
GST weight change mortality	/ / / /	* / / /	* / / / /

Exp. C: 14 d

Exposure concentration ($\mu g/g dry food$)	10	100	1000	100
Particle size (nm)	<75	<75	<75	<25
AE	*	/	±	*
feeding rate	/	/	*	±
CAT	/	/	/	*
GST	/	/	/	/
weight change	/	/	/	
mortality	/	/	/	/

Exp. D: 14 d

Exposure concentration ($\mu g/g dry food$)	1000	1000		
Particle size (nm)	<25 N ^b	<25 S ^c		
AE	/	*		
feeding rate	/	/		
CAT	*	*		
GST	/	/		
weight change	/	/	/	
mortality	/	/	/	/

589 Symbols: ^bN: non-sonicated dispersion; ^cS:sonicated dispersion, d-days; AE- food

590 assimilation efficiency; CAT-catalase; GST-glutathione S-transferase

591

593	Table 5 : Comparison between the effects caused by the exposure concentrations, daily
594	consumed doses and total consumed quantities of TiO_2 . The effects at a certain exposure
595	concentration/dose, which are significantly different in comparison to control, are
596	shown. Symbols denote: (/) p>0.1-no effect, (±) p<0.1; (*) p<0.05, and (**) p<0.001).

Exposure	Ex	Daily consumed	Total	AE	Feeding	CAT
concentration		dose of TiO ₂	consumed			
of TiO ₂		$(\mu g/g wet$	quantity of			
(μ g/g dry food)		wt./day) ^a	TiO ₂			
			$(\mu g/g \text{ wet wt.})^a$			
<25 nm 10 3 d	А	0.45	1.35	/	/	/
<25 nm 10 14 d	В	0.58	8.12	**	**	/
<75 nm 10 14 d	С	0.53	7.42	/	/	/
<25 nm 100 3 d	А	6.8	20.4	/	/	/
<25 nm 100 14 d	В	5.82	81.5	*	**	*
<25 nm 100 14 d	С	7.05	105	±	±	*
<75 nm 100 14 d	С	4.38	61.3	/	/	/
<25 nm 1000 3 d	А	73	219	/	/	/
<25 nm 1000 14 d	В	64.6	905.5	*	*	*
<25 nm 1000 S 14 d	D	55.7	835.5	/	/	*
<25 nm 1000 N 14 d	D	61.1	916.5	*	/	*
<75 nm 1000 14 d	C	73.21	1025	±	*	/

- Symbols: ^a expressed per animal wet weight; ^bN: non-sonicated dispersion; ^cS: sonicated, dispersion; Ex.- experiment, d-days; AE- food assimilation efficiency; CAT-599
- catalase
- Figures
- Fig. 1.

604

Fig. 4

